Corrections to B. E. Cain, Inertia Theory, *Linear Algebra and Appl.* 30:211–240 (1980)

B. E. Cain Department of Mathematics Technion—Israel Institute of Technology Haifa, Israel

Proof. The result is trivial if N=0, so we assume $N\neq 0$. Since the hypotheses and conclusions are invariant under unitary similarity, we may assume without loss that N is diagonal:

$$N=D\oplus 0_m$$
,

where D is the nonsingular diagonal matrix:

$$D = e^{i\theta_1} D_1 \oplus \cdots \oplus e^{i\theta_k} D_k,$$

where each D_j is an $n_j \times n_j$ real nonsingular diagonal matrix and the θ_j 's are distinct numbers satisfying $0 \le \theta_j < \pi$. Let S = PU, with $P \gg 0$ and U unitary, be the polar decomposition of S. Let Q be the leading $(n_1 + \cdots + n_k) \times (n_1 + \cdots + n_k)$ principal minor of P^2 .

Since we assumed that S*NS commutes with its adjoint,

$$NP^2N^* = N^*P^2N,$$

from which it follows that

$$D*QD=DQD*$$
.

Thus *Q* commutes with $D^*D^{-1} = D^{-1}D^*$. Since

$$D^{-1}D^* = e^{-i2\theta_1}I_{n_1} \oplus \cdots \oplus e^{-i2\theta_k}I_{n_k},$$

and since the numbers $e^{-i2\theta_i}$ are distinct, it follows that

$$Q = Q_1 \oplus \cdots \oplus Q_k$$
,

where each Q_i is $n_i \times n_i$ and positive definite.

LINEAR ALGEBRA AND ITS APPLICATIONS 42:285-286 (1982)

© Elsevier Science Publishing Co., Inc., 1982

52 Vanderbilt Ave., New York, NY 10017

0024 - 3795 / 82 / 010285 + 2\$02.75

285

By Theorem 3.1, $\ln(Q_iD_i) = \ln(D_i)$. Since Q_iD_i and D_i have real spectrum $(Q_iD_i$ is similar to the Hermitian matrix $\sqrt{Q_i}D_i\sqrt{Q_i}$), rotating by $e^{i\theta_i}$ gives

$$\theta \Big[Q_i \Big(e^{i\theta_i} D_j \Big) \Big] = \theta \Big[e^{i\theta_i} D_j \Big]$$

It follows that

$$\theta[S^*NS] = \theta[SS^*N] = \theta[P^2N] = \theta[QD \oplus 0_m]$$
$$= \theta[Q_1(e^{i\theta_1}D_1) \oplus \cdots \oplus Q_k(e^{i\theta_k}D_k) \oplus 0_m]$$
$$= \theta[(e^{i\theta_1}D_1) \oplus \cdots \oplus (e^{i\theta_k}D_k) \oplus 0_m] = \theta[N].$$

This proof characterizes the nonsingular S for which S*NS is normal.

We thank R. K. Meany for drawing attention to errors in the published proof.

Received 21 January 1981; revised 1 April 1981