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Proof, The result is trivial if N=O, so we assume NZO. Since the 
hypotheses and conclusions are invariant under unitary similarity, we may 
assume without loss that N is diagonal: 

N= DBO,,,, 

where D is the nonsingular diagonal matrix: 

D=eielD1@ . . . CBeiekDk, 

where each Di is an ni Xni real nonsingular diagonal matrix and the 6,‘s are 
distinct numbers satisfying OGei <P. Let S=PU, with P>O and U unitary, be 
the polar decomposition of S. Let Q be the leading (n, + . . * +n,)X (n, 
+ . . . +n,) principal minor of P’. 

Since we assumed that S*NS commutes with its adjoint, 

NP2N* =N*P’N 3 

from which it follows that 

D*QD=DQD*. 

Thus Q commutes with D*D-’ =D-‘D*. Since 

D-l~*=e-i2~1Z,,@ . . . @e-‘20k1,k, 

and since the numbers e -i28i are distinct, it follows that 

where each Qi is ni X ni and positive definite. 
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By Theorem 3.1, In( Q,Di) = In( D,). Since QiDi and Di have real spectrum 

(Qioi is similar to the Hermitian matrix dQ,D&), rotating by eiei gives 

B[ O,( eisfDi)] =B[ eiefDy]. 

It follows that 

This proof characterizes the nonsingular S for which S*NS is normal. 

We thank R. K. Meany for drawing attention to errors in the published 
proof: 
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